
C Newbould Copyright © 2025 1 of 8

MC/DC Supplementary v5

Section Supplement

Software Testing

TTA - Methodologies

Guide for ISTQB Exam CTAL-TTA

ISTQB® TTA

2021 Syllabus v4

September 2025

Catherine Newbould BSc. (Hons.), AKC

Copyright 2025

C Newbould Copyright © 2025 2 of 8

More Information for Modified Condition/decision coverage

Due to time constraints, the exam is unlikely to require MC/DC test cases to be created from a given

scenario; rather, it will assess the suggested test cases to determine if they provide adequate MC/DC

coverage. Thus, the primary focus of the book is on approaches for analyzing test cases provided, not

creating them. However, this supplementary information is provided for those who want to understand

MC/DC testing in greater depth.

Methodologies for determining the minimum number of test cases for full MC/DC coverage.

For full consideration of the minimum number of MC/DC, there are two primary formal methods:

unique-cause and masking. The truth tables are typically the starting point for these methods. For

simple, relatively uncomplicated code, it may not be necessary to use a formal approach with a truth

table. However, using the truth table can help reduce the risk of errors. A combination of both unique-

cause and masking can be used.

The general principles are:

The condition must independently affect the decision outcome

Each condition must be shown to take both true and false values

Conditions may or may not change, depending on the method used, and

 provided they are not responsible for changing the outcome

There can be multiple valid sets of test cases that satisfy MC/DC requirement.

Informal MC/DC

Instead of analyzing every possible combination of conditions as in formal methods, such as unique-

cause, an informal Modified Condition/Decision Coverage MC/DC method has a less rigid approach to

satisfying the MC/DC requirements. It can be used when strict formal methods are not feasible or

necessary.

Characteristics of the informal method are:

Highlights how each condition contributes to the decision through selected tests

Allows more flexibility, such as using manual reasoning or tools to justify independence

May use Masking MC/DC, where other conditions can change, provided the tested

 condition’s effect is still observable

Relies on testers’ understanding of the logic

C Newbould Copyright © 2025 3 of 8

Unique-cause MC/DC

Unique-cause MC/DC is a formal testing method that examines all input combinations of conditions. It
checks if a condition independently affects a decision. The condition must change the decision's
outcome by itself. All other conditions must stay the same during the test.

Characteristics of unique-cause are:

Ensures no masking by other conditions.
Each test pair demonstrates the cause-effect relationship resulting from a single condition
 change.

Masking MC/DC
Masking MC/DC allows more than one condition to change between test pairs, as long as the effect of
one specific condition can still be isolated. This may be necessary due to constraints such as
unreachable combinations and where one condition cannot be isolated.

Masking MC/DC accepts more flexible test pairs, provided:

The effect of the tested condition is provable, and

The effect of other changing conditions is logically irrelevant, masked by logic.

Although not as strict as unique-cause, masking still meets the avionics DO-178C Level A MC/DC

coverage criteria and those of many other regulations.

Examples:
Consider the following scenario and the examples of using informal, unique-cause and masking

methods.

Scenario: You are tasked with testing software that determines if the aircraft should divert to a different

destination airport. Boolean conditions handled by the code are:

high_ fuel_consumption: true if the aircraft’s fuel consumption rate is higher than expected,

leaving insufficient fuel to reach the destination.

deteriorating_weather: true if weather conditions at the destination are deteriorating rapidly.

low_fuel: true if the aircraft is unable to hold for an extended period due to limited
fuel reserves.

The logic in the code is:

IF (higher_fuel_consumption) OR (deteriorating_weather AND low_fuel) THEN

divert to the nearest suitable alternate airport.

T, true and F, false are used below. In some sources, 0 is used to represent false, and 1 to represent

true.

C Newbould Copyright © 2025 4 of 8

Example 1: Using Informal MC/DC method to determine the minimum test cases required for full

MC/DC coverage for the scenario above. This is the least formal of the methods.

Step 1: Choose two test cases where changing deteriorating_weather and keeping low_fuel and

higher-fuel-consumption unchanged:

 Test case 1. F (T, T) outcome divert

 Test case 2. F (F, T) outcome no divert

Step 2: Choose two test cases where changing low_fuel and keeping deteriorating_weather and

higher-fuel-consumption unchanged changes the outcome:

 Test case 3: F (T, T) outcome divert

 Test case 4: F (T, F) outcome no divert

Step 3: Choose two test cases where changing higher-fuel-consumption and keeping low_fuel and

keeping deteriorating_weather and low_fuel unchanged changes the outcome:

 Test case 5. T (F T) outcome divert

 Test case 6. F (T F) outcome no divert

Step 4: Inspect test cases:

 Test case 1. F (T, T) outcome divert

 Test case 2. F (F, T) outcome no divert

 Test case 3. F (T, T) outcome divert

 Test case 4. F (T, F) outcome no divert

 Test case 5. T (F, T) outcome divert

 Test case 6. F (T, F) outcome no divert

Remove duplicate test cases and in the remaining test cases check outcomes change:

 Test case 4 and test case 6 are the same, remove one of these

 Test case 1 and test case 3 are the same, remove one of these

This leaves:

 Test case 1. F (T, T) outcome divert

 Test case 2. F (F, T) outcome no divert

 Test case 5. T (F, T) outcome divert

 Test case 4. F (T, F) outcome no divert

Test cases 1 and 2 show the effect of changing deteriorating_weather

Test cases 1 and 4 show the effect of changing low_fuel changing

Test cases 2 and 5 show the effect of changing higher_fuel_consumption

C Newbould Copyright © 2025 5 of 8

Example: 2 Using Unique-Cause MC/DC to determine the minimum test cases required for full
MC/DC coverage for the scenario above.

Step 1: Create a table showing all options. For an overview of how to do this, see 2.5 Multiple condition

testing. For more details, see Decision Tables in Advanced Test Analyst by C. Newbould.

Test
Case

High_fuel_
consumption

Deteriorating_weather Low_fuel Divert_other_airport

1 true true true true / divert

2 true true false true / divert

3 true false true true / divert

4 true false false true / divert

5 false true true true / divert

6 false true false false / no divert

7 false false true false / no divert

8 false false false false / no divert

Step 2: Identify a pair of test cases where the outcome results are different with only one condition

changing.

For example: Test case 3 T, (F, T) outcome divert and Test case 7 F, (F, T) outcome no divert.

Step 3: Next use test case 5 F, (T, T), outcome divert). It changes one condition compared to test

case 7.

Step 4: Then use test case 6 (F, T, F) outcome no divert.

The outcomes alternate:

 Test case 3: T, (F, T) divert

 Test case 7: F, (F, T) no divert , higher_fuel_consumption changed from test case 3

 Test case 5: F, (T, T) divert, deteriorating weather changed from test case 7

 Test case 6: F, (T, F) no divert, low_fuel changed from test case 5

Alternative possible for Step 2: If the two test cases selected with different divert condition outcomes

are: Test case 6 F, (T, F) outcome no divert and Test case 5 F, (T, T) outcome divert.

Alternative possible for Step 3: Use test case 7 F, (F, T) outcome no divert.

followed by test case 3 T, (F, T) outcome divert.

Test case 6: F, (T, F) no divert

Test case 5: F, (T, T) divert, low-fuel changes

Test case 7: F, (F, T) no divert, deteriorating weather changes

Test case 3: T, (F, T) divert high fuel consumption changes

C Newbould Copyright © 2025 6 of 8

Example: 3 Using Masking MC/DC, to determine the minimum test cases required for full MC/DC
coverage for the scenario above.

Step 1: Create a table. For an overview of how to do this, see 2.5 Multiple condition testing. For more

detail see Decision Tables in Advanced Test Analyst by C. Newbould.

Test
case

High_fuel_consumption Deteriorating_weather Low_fuel Divert_other_airport

1 true true true true / divert

2 true true false true / divert

3 true false true true / divert

4 true false false true / divert

5 false true true true / divert

6 false true false false / no divert

7 false false true false / no divert

8 false false false false / no divert

Step 2: Empty cells are where value has no bearing on outcome.

Test
case

High_fuel_consumption Deteriorating_weather Low_fuel Divert_other_airport

1 true true / divert

2 true true / divert

3 true true / divert

4 true true / divert

5 true true true / divert

6 false true false false / no divert

7 false false false / no divert

8 false false false / no divert

Cells above that are now blank indicate the condition has no bearing on the outcome.

 Step 3: Test case 6 should be chosen as there are values in all cells. The outcome is false.

 Test case 6 F (T, F) changes low_fuel from test case 5, outcome no divert.

Step 4 A test case that changes one of the values inside the brackets and the outcome should be

chosen:

 Test case 5 F (T, T) outcome divert.

Step 4 A test case that changes the value of the other condition inside the brackets and the outcome

should be chosen:

 Ttest case 7 F (F, T) changes deteriorating_weather from test case, 5 outcome no divert.

Step 5 A test case changing the value of the last condition to be evaluated and changes the outcome

should be chosen:

 Test case 3 T (F, T) changes higher_fuel consumption, test case 6, outcome divert.

C Newbould Copyright © 2025 7 of 8

Short-circuiting
Modern languages, such as Python, JavaScript, Java, C#, Go, Swift, support short-circuiting. By
default. Older languages might not use short-circuiting.

Many sources mix short-circuiting principles, particularly with the masking method, as there is some
commonality in the idea that some conditions need not be evaluated. This can be confusing for
determining test cases.

The number of MC/DC test cases can only be reduced if it is specified that masked conditions are

excluded from needing proof of their independent effect. When using short-circuit logic, not all

conditions may be evaluated, leading to the possibility that certain MC/DC test cases could be seen as

duplicates.

Example, MC/DC and Short-circuiting

With the scenario above and the M/C/DC method examples, four test cases are required: With default

short-circuiting, this reduces to three distinct test cases, as evaluation of

(deteriorating_weather AND low-fuel) false is made as soon as deteriorating_weather is determined to

be false, and low-fuel is not then checked.

Test Case
MC/DC Test case no
short-circuiting

MC/DC Test case with
short-circuiting

1 F (T, T) F (T)

2 F (T, F) F (F)

3 T (T, F) T (F

4 F (F, T) F (F)

(deteriorating_weather and low_fuel) is evaluated first, according to BEMDAS; Brackets, Exponents,

Multiplication, Division, Addition and Subtraction, from left to right.

With short-circuiting, test cases 2 and 4 are the same.

Note: An exam question may assume a modern programming language is being used or only give a

correct option that assumes short-circuiting. The other options in the question do not achieve MC/DC

proper or reduced coverage, or a defined coverage requirement.

Proper MC/DC testing must be used to show that every condition is independently evaluated as both

true and false and the outcome changes. If MC/DC test cases are reduced, the quality of coverage may

be compromised.

Best practices for proper MC/DC testing include:

Understand the software language’s evaluation rules.
Use coverage tools that track condition evaluation, not just decision outcomes.
Consider code reviews and manual analysis for safety-critical software.

C Newbould Copyright © 2025 8 of 8

Test cases can be removed in practice. For example, during test optimization or runtime testing

providing:

Testing is only concerned with runtime behavior, not strict coverage metrics such as MC/DC.

Testing is using black-box testing, and the skipped conditions cannot affect the outcome or

behavior.

The software under test includes logic that is not safety-critical, and basic coverage, such as

decision or condition coverage, is considered adequate.

Testing is validating optimization of code paths such as performance), not logic correctness.

See Pages 78 and 79 in the Software Testing Technical Test Analyst guide book.

